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Abstract

The increasing use of autonomous AI systems to make decisions
that directly affect people’s livelihoods—e.g., loan approvals, job ap-
plications, and prison sentencing—has sparked interest in developing
methods to explain the decisions made by such systems. One recent
paper by Wachter et al. (2018) proposes the use of counterfactuals as
explanations of AI decision making. In this paper, I critically examine
this proposal by using two prominent interpretations of counterfactu-
als, possible worlds semantics and structural equation models, to an-
alyze how well Wachter et al.’s counterfactual explanations meet the
goals of explainability as defined in the literature.

1 Introduction

Recent years have seen a rapid increase in the public deployment of au-
tonomous systems driven by artificial intelligence (AI)—that is, systems
which can algorithmically make complex decisions with little to no human
input. Although AI systems hold great promise for productivity and effi-
ciency, incidents like a self-driving car failing to identify a pedestrian1 and a
facial recognition system displaying racial bias2 have led to concerns about
the fairness and correctness of such systems.

1https://www.theverge.com/2019/5/17/18629214/tesla-autopilot-crash-

death-josh-brown-jeremy-banner
2https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-

recognition-bias-race-gender
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In response, a growing body of literature on “explainable AI” now aims to
develop formal methods for analyzing and understanding the decisions made
by AI systems, enabling systematic evaluations of fairness and correctness.
“Explainability” is hard to define precisely, since it can mean different things
to different stakeholders, so the best way to understand it is in terms of its
goals. One recent survey of the field (Adadi and Berrada, 2018) identifies
four goals for explainability:

1. Justification: An explanation should reveal the reasons behind the
system’s decision. This provides a level of transparency; for instance,
such an explanation can provide assurance that the system is not se-
cretly making use of a protected category like race or gender.

2. Control: An explanation should offer insight into how the system
can be changed to yield a different outcome, allowing its designers to
identify and correct errors.

3. Improvement: An explanation should highlight areas of weakness in
the system that its designers could use as a starting point for making
improvements.

4. Discovery: An explanation should reveal some facts about the world
that might be helpful to people even in other contexts; for instance, an
explainable chess AI could be used to discover new strategies.

Of course, this taxonomy only lays out what an explanation should achieve,
not what it should concretely look like. Thus, the bulk of the explainable
AI literature is dedicated to proposal and discussion of concrete methods
for achieving these goals. Before I can explain these methods, however, I
must first introduce some technical terminology that I will use throughout
the paper to discuss AI systems at a more detailed level.

1.1 Technical Notation

As a precise technical explanation of how AI systems work is beyond the
scope of this paper, throughout the discussion I will describe the functioning
of an AI system merely at an abstract level using the following terminology.
Let S denote an AI system. Then, we say that S makes a decision d when S
is applied to some subject or input x; I denote this in shorthand as S(x) = d.
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The exact nature of both d and x depends on what task S is designed
to perform; for example, in a self-driving car x might be an image of the
road, and d might correspond to a physical action like braking. However,
one property that holds across nearly all tasks is that the input x is not a
primitive, monolithic entity; rather, it is a complex object made up of simpler
components. This can again be illustrated by the self-driving car example:
the input image x is made up of pixels. In general, the individual components
that comprise an input x are referred to as features. When needed, I will
use the notation x = 〈x1, x2, . . . , xn〉 to explicitly “decompose” x into its
component features; in this notation, each xi (i denoting an integer from 1
to n) denotes an individual feature (e.g., one pixel).

1.2 Approaches to Explainability

While there have been a number of proposals for concrete approaches to
explainability (surveyed in Adadi and Berrada (2018); Arrieta et al. (2019)),
the leading approaches that have actually been put into real-world use can be
roughly categorized into three types (Bhatt et al., 2019): feature importance,
adversarial perturbation, and counterfactual explanations. This paper focuses
on the latter approach, counterfactual explanations, and I define it in detail
in Section 2. However, for the sake of comparison I will also briefly describe
the other two approaches here at a high level, skipping the mathematical
details of exactly how each approach is implemented.3 After laying out my
critique of counterfactual explanations, I will briefly return to these other
approaches in Section 4 to compare the practical merits of counterfactual
explanations compared to other techniques in light of my critique.

Feature importance is a well-established technique and is the most com-
monly used approach to AI explainability in practice. At the core of this
technique are so-called “explanation functions”: for a system S that makes
decision d on input x, an explanation function produces an “importance
score” φi for each feature xi in x. As the name implies, each importance
score is a measure of how important the corresponding feature was to S when
making decision d; a higher score means higher importance. To illustrate,
consider applying this technique to explain why a self-driving car stopped. If
the self-driving car is making decisions similar to how a human driver would,

3My high-level descriptions are summaries of the technical definitions provided by Bhatt
et al. (2019); readers interested in the full technical description of these methods may
consult that paper.
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then we would expect that red pixels get high importance scores (since such
pixels might correspond to stop signs and red traffic lights), while blue pixels
get low importance scores (since such pixels don’t correspond to any relevant
traffic signal).

In contrast to feature importance, which produces evaluations of individ-
ual inputs, the adversarial perturbation approach instead aims to evaluate
the system S as a whole. Specifically, it characterizes the “robustness” of
S, which can be loosely defined as a measure of how hard it is to trick S
into making a wrong decision. For any input x for which S makes a correct
decision d (where correctness is according to a human judge), adversarial
perturbation searches for the smallest possible change to x that will cause
S to make an incorrect decision. Intuitively, a small change should be one
that would not fool a human. For example, some famous work in this direc-
tion showed that an AI system designed to identify different kinds of animals
in an image can be tricked into misclassifying one animal as another (e.g.,
thinking a cat is a dog) by adding a miniscule amount of noise to the image,
so small that a human would not notice the change (and would thus not be
fooled). Robustness is then defined as the average amount of change needed
to trick S in this way, capturing the intuition that a robust system should
not be sensitive to small changes that a human would not notice.

Having introduced these other approaches to explainability, I can now
turn to the focus of this paper: the third approach, counterfactual explana-
tions, originally proposed by Wachter et al. (2018).

2 The Counterfactual Approach to Explain-

ability

A counterfactual explanation of a decision S(x) = d is a counterfactual sen-
tence where the antecedent describes a change to the input x′ and the conse-
quent describes a change in the decision d′. Wachter et al. give the following
example in the context of an AI system for processing loan applications:

If your income had been $45,000, you would have been offered a
loan [by the system].

According to Wachter et al., this kind of sentence serves as an expla-
nation in the sense that it “describes a dependency on external facts that
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led to the decision.” The key advantage of counterfactual explanations over
other approaches, as touted by Wachter et al., is their intuitiveness to a
general audience: whereas a layperson might not know what an importance
score or robustness score means for them in practice, counterfactuals are a
common feature of everyday language, and as such the layperson can much
more naturally understand a counterfactual explanation. For instance, in
a loan application setting, an applicant might want to know what actions
they could take to improve their chances of getting a loan; importance scores
and robustness scores do not immediately translate to any specific action,
whereas the counterfactual explanation in Wachter et al.’s example points
out a specific action in an easy to understand way.

Wachter et al. do not merely propose such counterfactual sentences as
some abstract ideal of what an explanation should look like—they lay out
a concrete technical methodology for automatically generating such expla-
nations. As before, the mathematical details of how this method works are
beyond the scope of this paper,4 but at a high level, the method systemati-
cally simulates changes to the input x (e.g., changing the feature representing
income from $30,000 to $45,000), then applies S to each changed input x′

and checks whether S’s decision changes. Every x′ that leads to a changed
decision d′ can then be interpreted as a counterfactual explanation: if x′ had
been the case, S would have made decision d′. As a terminological note,
henceforth I will adopt the terminology A > B as a shorthand for the coun-
terfactual “if A had been the case, B would have been the case”, so the above
counterfactual explanation can be succinctly expressed as x′ > d′.

Bhatt et al. (2019) have observed that from a technical perspective, coun-
terfactual explanations and adversarial perturbation are closely related, in
that both involve systematically changing the input x to change the decision
d. The core difference between the two lies in what kind of change they seek
to make. Where adversarial perturbation looks for small changes that are
unnoticeable to humans, counterfactual explanations seek the opposite: the
change should be noticeable and meaningful to a human, as it is meant to
capture the intuitive notion of “how things could have been.” Furthermore,
where adversarial perturbation focuses on tricking the system into making
an incorrect decision, for counterfactual explanations the correctness of the
changed decision is irrelevant: regardless of whether or not granting a loan to
someone with an income of $45,000 is the “right” decision, Wachter et al.’s

4Interested readers may consult Section III of Wachter et al. (2018)
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example counterfactual still usefully reveals a property of the loan applica-
tion system (namely its reliance on income) that both users and developers
of the system might be interested in knowing.

3 Evaluating Counterfactual Explanations

Purported advantages notwithstanding, the use of counterfactuals to explain
AI decisions runs into philosophical difficulties regarding what counterfactu-
als actually mean—that is, how to formally evaluate a counterfactual sen-
tence. There are two leading approaches to interpreting counterfactuals:
possible worlds semantics and structural equation models. I will apply both
of these approaches to evaluate Wachter et al.-style counterfactual explana-
tions, and show that while each method yields slightly different results, they
both reveal potential problems for counterfactual explanations in terms of
meeting the four goals of explainability.

3.1 Possible Worlds Semantics

Possible worlds semantics, exemplified by Lewis (1973b), holds that the
meaning of the counterfactual A > B is that given some set W of possi-
ble worlds, every world w ∈ W where A holds is also a world where B holds.
Specific theories differ in their definition of W ; most notably, strict analyses
treat W as the worlds that are “accessible” from the actual world, while
similarity analyses treat W as the worlds that are “most similar” to the ac-
tual world (Starr, 2019). There has been much philosophical debate over how
terms like “accessible” and “similar” should be precisely defined, but we need
not delve into this. For our purposes, it suffices to use our intuitive, everyday
understanding of “accessible” and “similar,” and to treat accessibility and
similarity as playing the same role of limiting the scope of possible worlds.

It is worth noting that Wachter et al.’s technical approach to generating
counterfactual explanations is closely related to possible worlds. One way
to understand a possible world is as a set of truth values Veltman (2005);
Kratzer (2012). In other words, a possible world may be treated as a col-
lection of statements like “John’s income is $45,000.” In this sense, when
Wachter et al. simulate changes to x, they are effectively enumerating pos-
sible worlds—each simulated change x′ is an (incomplete) description of a
possible world containing the fact that x′ (instead of x) is the case. Like-
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wise, running the system S on each input x′ to obtain decision d′ amounts to
constructing the set W of accessible/most-similar worlds. Indeed, Wachter
et al. themselves describe their method as discovering the most similar pos-
sible worlds.

3.2 Problems for Counterfactual Explanations Under
Possible Worlds Semantics

Among the four goals of explainability, the one for which a problem most
immediately appears under possible worlds semantics is discovery. If the
counterfactual x′ > d′ is merely making a statement about possible worlds
where x′ is the case, it is hard to see how that could translate to knowledge
about the way our actual world works. To illustrate this concern, consider
the discovery example used in the introduction: using a chess-playing AI to
discover new chess strategies. Suppose that a chess AI looks at a particular
board layout and decides to move its pawn, and Wachter et al.’s method
generates the following counterfactual explanation of this decision:

If the opponent’s queen had been in play, the chess AI would have
moved its knight (instead of moving its pawn).

According to possible worlds semantics, the formal meaning of the above
sentence is:

In the most similar world(s) where the opponent’s queen was in
play, the chess AI moved its knight.

Suppose now that a human player, in the same position as the AI system
was (in the real world), is seeking guidance on what move to make. It is hard
to see how the above statment, which makes some claim about a hypothetical
alternate world where the opponent’s queen is in play, could on its own be
of any practical use to the human player, who is faced with the reality of
the opponent’s queen not being in play. To make such knowledge of the
alternate world relevant to our decisions regarding the real world, we need
an extra missing ingredient: namely, some kind of relationship between the
alternate world and the real world. We know that the alternate world differs
from the real world in (at least) two ways: the presence of the opponent’s
queen, and the chess AI’s choice of which piece to move. If we had some
additional knowledge of how those differences came about, then perhaps we
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could work backwards to construct a chain of reasoning corresponding to a
concrete strategy. But possible worlds semantics, which operationalize the
alternate world either as a primitive point in a space Lewis (1973b) or a
collection of truth values Veltman (2005); Kratzer (2012) offers no such path
to drawing connections between worlds.

A similar concern arises when considering control and improvement,
which both involve finding ways to change the system’s behavior. Let us
return to Wachter et al.’s loan application example, repeated below:

If your income had been $45,000, you would have been offered a
loan [by the system].

According to possible worlds semantics, this translates to:

In the most similar world(s) where your income is $45,000, the
system offers you a loan.

Suppose that after a change in management, the bank becomes more risk-
averse, and thus wants the system to use a higher income threshold for ap-
proving loans. Like in the chess case, the above sentence is arguably of little
help to the system designer in determining what must be changed in the
system to make it use a higher income threshold. This is because it makes
a statement about the most similar possible world(s), whereas the designer
needs a statement about the system itself. Specifically, while it may be true
that the counterfactual explanation reveals that S depends on income, the
designer needs to go one step further: they need to know how S depends on
income; that is, what kinds of internal decision making processes the system
is using when going from income to loan decision. But once again, possi-
ble worlds, being nothing more than primitive points or collections of truth
values, do not obviously encode such information.

By contrast, justification may hold up better under possible worlds
semantics. Adadi and Berrada explicitly define justification as not requiring
any understanding of the inner workings of the system—it suffices to say
that a feature xi was a reason for d, not why this was the case. However,
whether counterfactuals successfully do this depends on how one understands
a “reason” for a decision. In particular, Wachter et al. consider “reason” to
be synonymous with “cause.” So for Wachter et al., to say:

If your income had been $45,000, you would have been offered a
loan by the system.
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Is the same as to say:

The system denied you a loan because your income was less than
$45,000.

Thus, under this conceptualization of reason, counterfactual explanations
reveal the reasons for a system’s decision (and hence justify it) if and only
if they reveal the causes of the system’s decision. Certainly, some philoso-
phers, notably Lewis (1973a), believe that counterfactuals do support causal
reasoning: according to Lewis, causal dependence can be defined in terms of
a counterfactual:

e causally depends on c iff both e and c occurred, and if c hadn’t
occurred then e wouldn’t have occurred.

Notably, the structure of this counterfactual directly mirrors those of Wachter
et al.’s explanations, which take the form of describing a change to x (imply-
ing that x itself did not occur) and demonstrating a change in d (implying
that d itself did not occur). Thus, if Lewis’s account is correct, then Wachter
et al.’s explanations constitute causal claims.

However, Lewis’s account is subject to criticism, and one criticism that
particularly affects Wachter et al. (2018)’s project is that of preemption.
Preemption occurs when two events are individually sufficient to cause an
outcome, but the fact that one event actually causes the outcome prevents
the other cause from manifesting. This is illustrated in the following example
from Hall (2004):

Billy and Suzy throw rocks at a bottle. Suzy’s rock hits first and
shatters the bottle, and so Billy’s ends up flying harmlessly past
where the bottle once was.

In this example, our intuitive judgment is that Suzy throwing a rock
caused the bottle to break. Lewis’s account holds that the statement “Suzy’s
throw caused the bottle to break” is true if and only if had Suzy not thrown,
the bottle would not have broken. The problem is that arguably, the most
similar world in which Suzy did not throw is one where Billy still threw, and
the known laws of physics still apply, so (because of Billy’s rock) the bottle
actually does end up breaking. Thus, Lewis’s account seems to counterintu-
itively conclude that Suzy’s throw was not a cause of the bottle breaking.

An analogous scenario can be described for an AI system, and causes a
similar problem for Wachter et al. (2018):
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In AI system S, which is biased against older people, low in-
come and old age are individually sufficient for S to deny a loan.
Robert, who is both of old age and low income, applies for a loan,
which S denies.

Consider an auditor investigating whether S has an age bias. They look
for evidence that Robert’s age was a reason for S’s decision, and following
Wachter et al. (2018) they ask “if Robert had been younger, would S have
offered a loan?” The answer in this case is no, because Robert’s income still
triggers S’s denial. Indeed, the problem is particularly vexing for Wachter
et al. (2018) because it may affect their technical component as well: if S
truly works as described, then presumably no amount of simulating changes
to Robert’s age alone would yield a different decision, so Wachter et al.’s
would fail to reveal age as a reason for S’s decision.

That being said, this criticism is not a complete nail in the coffin for
possible worlds semantics. For one thing, there have been attempts to fix
the Lewis (1973a) account to work for preemption cases. Furthermore, even
if such fixes fail, all it would show is that causation is not fully reducible
to counterfactuals. It may still be the case that counterfactuals work as a
reasonable heuristic for causation, correctly describing causation in many
common cases but failing on specific edge cases like those involving preemp-
tion. If so, then Wachter et al.’s method could still find practical use by
likewise serving as a heuristic for justification, with the caveat that the justi-
fications it uncovers may be incomplete and should thus be seen as a starting
point, not a comprehensive picture.

In conclusion, we have found that under possible worlds semantics, coun-
terfactual explanations may at least partly meet the goal of justification,
but have difficulty meeting the remaining goals of discovery, control, and im-
provement. The problem of causality revealed itself to be relevant to whether
counterfactual explanations provide justification.

In hindsight, causality could also be relevant to meeting the challenges
posed by discovery, control, and improvement. When discussing control and
improvement, I argued that possible worlds interpretations of counterfactual
explanations are insufficient because they reveal factors that are relevant to
a system’s decision without describing how that factor is relevant; a causal
statement of the form “x caused f1, which caused f2,. . .,which caused d” could
provide this missing link. Similarly, in the case of discovery, I stated a need to
understand how the differences between different worlds come about; a causal
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model that describes how changing one fact leads to changing another fact,
and so on, seems like a prime candidate for providing this understanding.
The apparent importance of causality thus motivates a look at the second
approach to evaluating counterfactuals: structural equation models.

3.3 Structural Equation Models

Structural equation models (SEMs), introduced by Pearl (2000), are a way
of formally representing causal relationships between facts in the world. At
a high level, a SEM is a directed acyclic graph (DAG) where the nodes
represent facts in the world, which can either be true or false, and an edge
from v1 → v2 says that v2 depends on v1. Dependency, in turn, is understood
in terms of the titular structural equations: the value of a node v is set by
a boolean equation (that is, an equation using logical connectives like AND
(∧) and OR (∨)) over all nodes with edges to v; formally:

v = f(v1, v2, . . . , vk),where for each vi, there exists an edge vi → v

As a simple example, consider this basic loan approval model: the loan
will be approved (denote the corresponding node as A) if the applicant is
likely to repay it (P ); in turn, the applicant is judged as likely to repay if
their income is over $45,000 (I) and their credit score is over 650 (C). This
results in the following SEM (Figure 1):

I

C
P A
P = I ^ C

A = P

Figure 1: Visualization of the SEM for the basic loan approval example

To evaluate a counterfactual A > B using an SEM, Pearl prescribes the
following process known as intervention:

1. Remove all edges going into A (and their corresponding equations).

2. Set A = True.

3. Fill in all other nodes according to remaining structual equations.
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4. Check the resulting value of B.

For example, in the preceding simple loan model, to evaluate “if the model
had judged you likely to repay the loan, the loan would have been granted”
we remove the equation P = I ∧ C and set P = True, and according to the
remaining equation A = P we set A to True. Since A works out to be True,
the counterfactual is true.

Compared to possible worlds semantics, SEMs look much more promis-
ing for discovery. Recall that in Section 3.2, I argued that the key missing
ingredient for discovery was some notion of relationships between different
possibilities; that is, systematic reasons that certain facts might be different
in an alternate world. Such relationships between facts are exactly what
SEMs are designed to encode! Consider an SEM interpretation of the coun-
terfactual from the chess AI example:

If the opponent’s queen had been in play, the chess AI would have
moved its knight (instead of moving its pawn).

Under the SEM approach, evaluating this counterfactual involves construct-
ing an SEM that encodes relationships between board layouts and actions,
and intervening on the node that represents the presence of the opponent’s
queen. This intervention, in turn, sets off a chain reaction in the rest of the
DAG, in which subsequent nodes have their values updated to account for the
presence of the opponent’s queen. At a high level, tracing this chain reaction
and the nodes involved could serve as a description of why the queen’s pres-
ence led to the knight being moved. Such a description could be thought of as
a strategy—or at least, it more closely resembles a strategy when compared
to what possible worlds semantics gave us.

By similar reasoning, SEMs might also hold promise for control and im-
provement. For these goals, the key limitation of possible worlds semantics
was that it merely states that S depends on some feature xi, while control
and improvement require the additional step of understanding how S de-
pends on xi. At the very least, SEMs take a step closer to this: like in the
case of discovery, tracing the chain reaction that results from intervening on
xi might be thought of as tracing the intermediate processing steps that were
involved in going from xi to the decision d, thus giving some insight into the
system’s internal reasoning process.

The picture is slightly less straightforward for justification. As noted
in Section 3.2, possible worlds semantics already partially achieves the goal
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of justification, in that when complications like preemption are not involved,
the counterfactual x′ > d′ accurately captures a causal connection between
x′ and d′, meeting Wachter et al.’s criteria for justification. Indeed, the
SEM approach can handle such simple cases just as well as possible worlds
semantics did. The remaining question, then, is whether SEMs can do better
on the hard cases, like those involving preemption.

The answer to this is somewhat complicated. Pearl (2000) and follow-up
work do demonstrate that SEMs can correctly capture causation in the pres-
ence of preemption and other similar complications. However, they achieve
this by slightly modifying the connection between causation and counter-
factuals. Under Lewis’s possible worlds account, “e causally depends on c”
translates to the counterfactual “if c had not occurred, e would not have
occurred.” As noted in Section 3.2, this is important because it mirrors the
structure of Wachter et al.’s counterfactual explanations.

By contrast, Pearl’s theory stipulates that, to account for complications
like preemption, the counterfactual must additionally hold fixed events that
are not related to the intervention. For example, in Hall’s bottle-breaking
case, in reality Billy’s rock did not hit the bottle (since Suzy’s rock got
there first). According to Pearl, this fact must be held fixed when evaluating
whether Suzy’s throw caused the bottle to break, and so the resulting coun-
terfactual looks more like “If Suzy had not thrown, and Billy’s rock (still)
had not hit the bottle, the bottle would not have broken” (Menzies and Bee-
bee, 2020). Thus the simpler counterfactual “If Suzy had not thrown, the
bottle would not have broken” (which, again, is the form Wachter et al.’s
counterfactual explanations take) is not equivalent to a causal claim when
preemption is involved, and as such the SEM approach does not fill in the
gaps left by possible worlds semantics when it comes to providing a full
(causal) picture of justification.

3.4 Problems for Counterfactual Explanations Under
Structural Equation Models

So far, we have seen evidence that compared to possible worlds semantics, the
SEM approach is more promising for discovery, control, and improvement,
and effectively equivalent for justification. As such, we might be tempted
to claim that SEMs are a net improvement over possible worlds semantics.
This apparent improvement, however, papers over a fundamental problem:
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where does the SEM for a given counterfactual come from in the first place,
and how do we know when an SEM is “complete”?

In other words, there is a problem of circularity, which is particularly
salient in the setting of AI explainability: the SEM interpretation of counter-
factuals presupposes that we know ahead of time what the relevant variables
are and how they relate to each other, so that we can build the SEM to
intervene on. But the very reason we need explanations for AI decisions is
that we don’t know what the relevant variables and relations are—if we had
known, for instance, that system S uses income and credit score to deter-
mine likelihood to repay the loan, we wouldn’t have needed Wachter et al.’s
system to generate a counterfactual to tell us that! This circularity problem
is not unique to the AI explainability setting; in general, SEMs have been
criticized for offering a nonreductive account of causation (Schaffer, 2016).

That said, in the AI explainability setting there is a possible way out
of the circularity, at least for a subset of AI systems based on a popular
technique called neural networks. A neural network can be described in
the following (grossly oversimplified, but sufficient for our purposes) way: it
consists of interconnected neurons that can either be on (1) or off (0). A
directed connection between two neurons, n1 → n2, means that n2 being on
or off depends on whether n1 is on or off; specifially, the value of a neuron n
is a thresholded weighted sum of all neurons connected to n:

n = f(w1n1 + w2n2 + . . .+ wkkk)

Where the w’s are numerical constants (“weights”) and f is an “activation
function” that determines when the sum is large enough to turn on neuron
n. This can be visualized as follows (Figure 2):

n2

n1

n3

n4

n5

n6

n4 = f(w14n1 + w24n2 + w34n3)

n5 = f(w15n1 + w25n2 + w35n3)

n6 = f(w46n4 + w56n5)

Figure 2: Visualization of a neural network
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There are clear parallels between Figure 1 (an SEM) and Figure 2 (a
neural network): both are DAGs consisting of binary-valued nodes (on/off
or true/false) whose values are determined as a function of their incoming
connections. For AI systems based on neural networks, these parallels might
offer a way around the circularity problem: instead of creating an SEM
from scratch, we can directly convert the neural network into an SEM, with
neurons becoming nodes and thresholded weighted sums becoming structural
equations.

Of course, this proposal papers over technical details of how exactly this
conversion would operate. Rather than delving into that though, I instead
observe that even if we generously assume such a conversion is possible and
works perfectly, it still does not completely circumvent the circularity prob-
lem. This is because oftentimes, the antecendents we are interested in are
not directly stated in the input x, so if the system is to use such information
it must first encode it as an intermediate step between x and d. For example,
suppose we are testing a facial recognition system for gender bias. Nothing
in an image directly states the person’s gender, so to use gender as a factor
the system would first need to use some intermediate neuron(s) to encode
gender in terms of some combination of the pixels in the image. But the na-
ture of neural networks is such that we don’t know ahead of time what each
intermediate neuron means; the point of explanations is to help discover this.
Thus, we are right back at the circularity problem: if we knew ahead of time
what each neuron means, we wouldn’t need explanations to begin with.

In fact, the issue of interesting antecedents being higher-level concepts
rather than direct features in the input raises additional concerns for the SEM
approach beyond the circularity problem. Even if we set aside the circularity
problem and assume that we know which combination of pixels to intervene
on to evaluate the effect of gender, that still leaves the question of how we
would go about intervening on multiple nodes, since Pearl (2000) defines
intervention in terms of a single node. Indeed, Briggs (2012) shows that
when a counterfactual involves logically complex antecedents (involving, as
in our hypothetical gender scenario, some combination of nodes), intervention
is ambiguous: there might be multiple valid interventions, which could lead
to different conclusions. This is, of course, a problem for SEMs in general,
and is not specific to the AI explainability setting. In the AI explainability
setting, it suggests that an SEM interpretation would be limited only to the
simplest explanations, greatly reducing its scope and practical utility.
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4 Discussion and Conclusion

I have evaluated Wachter et al. (2018)’s counterfactual explanations of AI
systems in the context of two interpretations of counterfactuals: possible
worlds semantics and structural equation models. Structural equation mod-
els appear more promising in terms of meeting all four explainability goals
identified by Adadi and Berrada (2018), but they are hampered by a problem
of circularity which defeats the purpose of explanations in the first place. In
comparison, possible worlds semantics are free from this circularity problem,
but they arguably fail to meet the goals of control, improvement, and
discovery, and even their ability to provide justification may be limited.

In fairness to Wachter et al., they are aware of and open about the lim-
itations of their approach. In particular, they admit that counterfactual
explanations are not sufficient for all purposes, and are not suited to ap-
plications that require insight into the internal workings of the system (like
control and improvement). Instead, they focus exclusively on justification.
However, while we have found that justification indeed fares best out of the
four goals when it comes to counterfactual explanations, even it encounters
some problems, as counterfactual explanations may not offer a sufficiently
causal picture for justification.

Of course, this is not to say that the Wachter et al. (2018) approach is
without merit. Indeed, we should now consider counterfactual explanations
in the broader context of the explainability literature by briefly comparing
them to the other existing approaches. As Wachter et al. have argued, the
key advantage of counterfactual explanations is their accessibility to a gen-
eral audience. This property makes them practically useful for justification,
since the person seeking reasons for an AI system’s decisions is very likely
to be a layperson (e.g., a loan applicant) with little to no knowledge of the
mathematics behind the system. By contrast, feature importance, which is
more closely tied to the internal workings of the system, might be more useful
for control and improvement, and likewise adversarial perturbation is almost
purpose-built for the goal of improvement, as it centers around identifying
weaknesses of the system.

As such, rather than thinking about the different approaches to explain-
ability as being in competition, we should view them as complementing each
other: each one is best suited to a different goal of explainability. Counter-
factual explanations might fail to meet the goals of control and improvement,
but people interested in those goals can still turn to feature importance or
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adversarial perturbation; conversely, feature importance and adversarial per-
turbation might be inaccessible to general audiences, but such audiences can
(at least partially) find the justifications they seek in counterfactual expla-
nations.

Of course, it remains the case that even in this broader-context picture,
counterfactual explanations are somewhat held back by the problem of cau-
sation. That being said, it should be noted that feature importance and ad-
versarial perturbation have their own weaknesses, some of which are closely
related to the problems plaguing counterfactual explanations. For example,
the problem of interesting antecedents being higher-level concepts rather than
direct features in the input is also relevant when considering feature impor-
tance, as it implies that there is no single importance score that can reveal
the importance of something like, for example, gender in an image. All
this is not to say that today’s approaches to explainability are a lost cause.
Rather, the takeaway should be that users of any explainability technique—
counterfactual or otherwise—should be aware of these limitations and ac-
count for them wherever possible, and also that the job of explainability
researchers is far from done, with many questions—particularly surrounding
causation—still to be answered.
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